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Abstract—This report outlines COMP6208 Team Mai$on’s
development and assay of machine learning models to predict
house prices in the Ames, Iowa Housing Dataset.

I. INTRODUCTION

HOUSE price prediction is the aim of the project, within
the dataset of 1,465 observations and 80 variables on

houses sold in Ames, Iowa between 2006 and 2010 (here-
after known as the ’Ames dataset’). This report focuses on
the application of relevant machine learning models, and is
laid out roughly in the order in which the group tried to
approach the subject. First, the key findings from the prior
Data Exploration Report [4] were reviewed. Secondly, various
models were applied and diagnosed. Finally, the results and
qualities of the various models were reflected on in terms of
prediction error, ease of use, explainability and robustness.

II. PREPARING TO MODEL

A. Learning and Evolving from Data Exploration Report
Taking the top 5 features by importance across eight model

types yielded a pooled list of 9 top features, which was a useful
starting place for fitting models, especially linear models.
More generally, the understanding of the data that the group
built up in the data exploration stage paid dividends when it
came to modelling. All group members could now feel con-
fident in applying the models, and the ’situational awareness’
of the data aided in diagnosing models. For example, linear
regression with Lasso regularisation stochastically chooses
which variables to push to zero weights - understanding
whether the resultant set of features was ’sensible’ in terms
of covering the latent dimensions could only be achieved
with the prior intuition that had been developed through data
exploration.

B. Data Used
The set produced after feature encoding in [4] was used

for all modelling. One-hot encoding of 14 variables which
could the group determined could not otherwise be encoded
without in-depth research yielded a 1465× 195 set, of which
for some models the categorical variables were excluded to
make a 1465× 66 subset. SalePrice is the target variable.

A train/test split on observations was made by the group,
with a 80/20 ratio, using sklearn’s train test split, with
a specified random seed for reproduceability, with ntrain =
1168, ntest = 292. For random forest and gradient boosting
methods, cross-validation split took place on the training set
during model selection and fitting. The test set was never used
for fitting, and only ever used to produce fit-metrics on already
trained models.

Plain text descriptions of labels used in the report are
available at [2].

C. How to Compare Model Performance?

The group considered which metrics would be best
to compare model performance. Root-mean-square error,
RMSE(ŷ) = E((ŷ − y)2)0.5, was identified as an obvious
metric, as it penalises models with large errors, whilst also
providing a result that is readily relatable to the house price
values. RMSE is a function of absolute error, scoring such
errors the same on low and high SalePrice, so the group
considered using log RMSE or RMSE on percentage error,
but ultimately concluded plain RMSE on SalePrice to be
a suitable measure since 80% of the target lies in the range
(106k, 277k). R2 is 1 minus the sum of squares of residuals
divided by the total sum of squares, and represents the
proportion of variance in the target variable accounted for by
the model, and gives a measure of the goodness of the model
given the variance present in the data.

These two metrics were settled upon as they are easily
applied to all model types, provide two slightly different
measures of fit, and are commonly understood. Results are
summarised in Table 1. Other aspects of model performance,
such as support and intepretability are more bespoke and
considered on a per-model basis.

III. MODEL APPLICATION

A. Linear Regression

Several variants of linear regression models were fit. First
of all, the regression was performed on all 195 features. This
yielded a model with R2 0.90 and 0.88, and RMSE 25.8k and
26.8k for train and test respectively (Tab. 1 ref A). By these
two metrics alone, this could be an attractive model, however
being of dimension 195, given the sample size and what we
know about the colinearity of features, this model is clearly
overfit and unsuitable. Nevertheless, it serves as a baseline.
Model fit is shown in Figure 1a and serves to show us that
there are some ’general’ outliers in our dataset, particularly
around the $400− 800k target range, but with a few at lower
values too.

Reducing the number of dimensions, fitting the model this
on only non-categorical features (i.e. on 66 dimensions), then
on the pooled top 9 features, then on the top 5 features
identified in the exploration phase, led to only an incremental
decrease in performance (Tab. 1 ref B,C,D), with the latter
model having R2 0.81 and RMSE of 34.1k on test. However
when it is considered that this model is now comprised of only
5 features - it’s strength is striking!

Examining this model further, when fitting linear models,
five key assumptions must be verified to hold true: linear
relationship, multivariate normality, negligble multicolinearity,
no auto-correlation, and homoscedasticity [3]. For this model,
these assumptions generally held true, and inspection of Figure
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1B shows a model that is particularly strong in the central body
of the data, from the origin up to around 375k. After this, the
model can be seen to dislocate and underestimate the value
of these more expensive houses. Furthermore, extreme outlier
under and over estimates can be observed for prices greater
than 500k. However, depsite these limitations of the model,
this is a favoured model since it is adequately performant for
the bulk of the data whilst being very parsimonious.

Lasso and Ridge regression apply L1 and L2 regularisation
respectively. Applying Lasso led to models with 11 and 12
features (Tab. 1 ref E,F). Fit was comparable to the 5 term
model (Tab. 1 ref D). Lasso is clearly a very easy way to
quickly obtain a low-dimension model. However, running the
algortihm with different random seeds yielded selection of
different parameters (presumably colinear across runs). So,
some data exploration is still important with Lasso to fully
understand the dataset, but if in a hurry, Lasso clearly has
benefits. Ridge regression does not promote such a sparse
representation as Lasso and provided a reasonable score al-
though remained of high-dimension. Elasticnet aims to provide
the best of Lasso and Ridge, but with the alpha scale set
to an even balance, the score was poor (Tab. 1 ref H), with
adjustment towards Lasso providing the best results.

With the analysis performed in the previous report on
clustering having demonstrated the existence of such a nature
in the data, in particular with examination of interia vs K
showing between 3 and 7 clusters being optimal, the group was
curious if this knowledge could be put to use. First, on 3 and 7
clusters of the top 9 features and SalePrice (Kdim = 10), the
RMSE was calculated with the cluster mean SalePrice used
as the prediction (Tab. 1 ref I,J). Remarkably, on 7 clusters this
gives a very good score. Taking it one step, further a linear
model using our original pooled top 9 features was now fit to
each of the clusters (Tab. 1 ref K,L; Figure 1c). This gave the
best score from this round of modelling.

But, is this ’hybrid’ a reasonable approach? Clearly as
K → n, RMSE → 0. But this is only true for the train set,
and on the test set the RMSE was good. Another potential
issue is that for a small change in the data, the prediction will
likely jump if a cluster boundary is crossed. Examination of
the clustered showed high cross-correlation of the centroids,
which was unexpected but actually meant the jumps will be
less extreme and more intuitive, and this is perhaps also a
result of using only our top 9 features. Depending on the use-
case, in practice this hybrid approach could be practical.

B. Decision Tree

Decision trees make little assumptions about the training
data, however, its non-parametric nature makes it prone to
overfitting. We can control this by regularising the model
through setting a maximum depth, as at the limit, the model
perfectly fits the data. Further hyperparameters for controlling
model fit are: the minimum number of samples a node must
have before it can be split and the minimum number of
samples a leaf node must have. We applied a grid search over
the hyperparameter space, applied 10-fold cross validation to
conclude that a tree of maximum depth = 6 with a minimum of

(a) Linear Regression: on all 195 features (Tab 1. ref A).

(b) Linear Regression: on top 5 features (Tab 1. ref D).

(c) Hybrid Model: Linear Regression on top 9 features, coefficients fit on
K=7 clusters (Tab 1. ref L).

Fig. 1: Linear model diagnostics. Train set = orange; test set
= black. Q-Q plot based on quantiles of Normal distribution.

2 samples before split and a minimum of 1 sample in the leaf
node had the best performance. On the test set, the best model
had a R2 = 0.809 with RMSE = 34.4k and the average
model on the 10-fold cross validated set had R2 = 0.739.
Figure 2 shows the predictions on test and validation set made
by the optimal model (Tab. 1 ref M,N). Although decision trees
are white box models which aid prediction interpretability,
due to a depth, d = 6, we note that our model will contain
2d+1 = 128 leaf nodes.

C. Random Forest

Random forest is an ensemble algorithm based on ‘forests’
of decision trees, meaning prediction from an ensemble of
trees are averaged to give the final random forest prediction.
In doing so, we lose the interpretability we had with pure
decision tree models. However, as shown in [4], SHAP features
may be used to aid interpretability of this black box model.
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Fig. 2: Decision tree model predictions on all features (left)
and on top 5 features (right).

Fig. 3: Random forest model predictions on all features (left)
and on top 5 features (right).

Random forests are suited to tabular and non-linear data. It is
also robust to outliers. It also provides lower risk to overfitting
compared with a decision tree.

We performed a grid search to optimise hyperparameters
on a 3-fold cross validation set. We chose a lower k for
k-fold as random forests are slower to train. We found the
best performing model had a maximum depth of 10, with 600
trees and

√
n features were considered when looking for best

split, where n is the total number of features. However, for
comparison, when we selected top 5 features from [4], to train
a different model, it performed equally well (Tab. 1 ref O,P).
Figure 3 shows the predictions made by both of these models.

D. Gradient Boosting

The Ames dataset spans across multiple dimensions with
many of them being categorical. Datasets of this form are
commonly thought to be handled well with ensembling meth-
ods such as the Gradient Boosting. Just like in the previous
report, we trained both the sklearn Gradient Boosting model
and the XGBoost, as Data Exploration study revealed that they
predict significantly different sets of most important features
and consequently they may yield different upon training.
As gradient boosting models rely on many hyperparameters, it
is necessary to find one set of unique choices of hyperparam-
eters that yields the highest results. This was found by the use
of a grid search method, which for sklearn Gradient Booster
was searching across: the number of weak decision trees to
include, learning rate, maximum depth of a single weak
learner, and the minimum number of samples required to
be at a leaf node. The remaining hyperparameters were left
with their default values. We found the most optimal choice of

hyperparameters to be: no− trees = 150, max− depth = 4,
learning − rate = 0.1 and min − samples − leaf = 1.
We implemented cross-validation for the duration of training
of Gradient Booster, with the corresponding learning curve
shown in Figure 4.

Fig. 4: Sklearn Gradient Booster cross-validation learning
curve.

In the Figure 4, one can see that validation score improves
steadily until the end of training, finally reaching a cross-
validation score of ≈ 85%. However, one can see that the gap
between the training and validation score remains significant.
The RMSE values for the test set was found to be equal to
25.9k (and 10.0k for the training set), which is a relatively
good score. The final test set R2 was found to be equal to
0.89, whilst for the training set that R2 was found to be 0.98
(Tab. 1 ref Q).
The grid search for the best choice of hyperparameters was
also applied to XGBoost model with the same set of hyperpa-
rameters optimised as for sklearn Gradient Booster. We found
the most optimal value of max− depth and learning− rate
to be the same as for Gradient Booster, whereas the most
optimal number of weak learners for XGboost was found
to be 60. Similarly, as for the first gradient boosting model,
we performed cross-validation during training with a resulting
learning curve shown in Figure 5.

Fig. 5: XGboost cross-validation learning curve.

The cross-validation learning curve for XGBoost bears a
very close resemblance to that of Gradient Booster, with
perhaps slightly higher validation score for the former. In fact
XGBoost converged to approximately equal RMSE value on
the test score equal to 28.0k (and 10.0k for training set) and
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TABLE I: Results of SalePrice prediction on the Ames dataset over different models.

Train Train Test Test Rank by
Ref Model R2 RMSE R2 RMSE Test RMSE
A Linear Regression (on all 195 feats.) 0.9 25784 0.88 26840 (5)
B Linear Regression (on all 66 non-cat. feats.) 0.83 32734 0.86 29568 (9)
C Linear Regression (on pooled top 9 feats.) 0.79 36588 0.82 33365 (12)
D Linear Regression (on Exh. Srch. top 5 feats ) 0.77 37879 0.81 34126 (14)
E Linear Regression (LassoCV 195 to 12 feats.) 0.76 38793 0.81 34254 (15)
F Linear Regression (LassoCV 66 non-cat. to 11 feats.) 0.81 34469 0.86 29839 (10)
G Linear Regression (RidgeCV 66 non-cat. feats.) 0.80 35916 0.84 31289 (11)
H Linear Regression (Elasticnet 66 non-cat. to 17 feats.) 0.59 50886 0.63 48100 (19)
I K-Mean Cluster (K=3, on top 9 feats.) - 63340 - 38373 (17)
J K-Mean Cluster (K=7, on top 9 feats.) - 17457 - 16704 (2)
K Linear Regression (on ea. K-Mean cluster, K=3, top 9 feats.) - 23268 - 24961 (3)
L Linear Regression (on ea. K-Mean cluster, K=7, top 9 feats.) - 13496 - 14281 (1)
M Decision Tree (on all 195 feats.) 0.91 23667 0.76 38878 (18)
N Decision Tree (on top 5 feats.) 0.89 34435 0.81 34435 (16)
O Random Forest (on all 195 feats.) 0.94 17837 0.86 29475 (8)
P Random Forest (on top 5 feats.) 0.94 29218 0.86 29218 (7)
Q Sklearn Gradient Boosting Regressor 0.98 10028 0.89 25923 (4)
R XGBoost 0.97 11807 0.89 28083 (6)
S Multilayer Perceptron 0.83 30840 0.82 33610 (13)

Fig. 6: MLP learning curve.

exactly equal test set R2 value of 0.89. The training set R2

was found to be slightly smaller than that of Gradient Booster
and equal to 0.97 (Tab. 1 ref R). We can hence see that despite
significantly different results in Data Exploration study, both
XGBoost and Gradient Booster achieved similar scores on
the Ames dataset.

E. Multilayer Perceptron

MLP is a less obvious method for this prediction problem,
but with a high-dimensional dataset the group was curious
how it would perform. Architecture used was: one linear
layer activated by leaky ReLU, followed by 3 hidden layers,
activated by leaky ReLU and log of the softmax. Sizes of
the layers were set to be (from top to bottom): 128 (input
size), 500, 300, 30, 1 (SalePrice). We trained the model
for 40 epochs with MSE set as the loss function and default
parametrised Adam set as an optimiser. The resulting learning
curve can be seen in Figure 6, and we can see that unlike
e.g. learning curves for Gradient boosting models, here both
results for validation and training data improve steadily and on
par. The final validation RMSE score was found to be 30.8k,
whereas RMSE for the test set was found to be 33.6k. Despite
such low test set RMSE values, the network did not yield as
high test set R2 results as other models analysed in this report:
test R2 was 0.82 (0.83 on validation set) (Tab. 1 ref S).

F. Areas for Further Research
Ensembling of divserse models has been empirically shown

to lead to more robust models [5], and could be of interest.
Gaussian processes could be applied to this problem in an
online learning situation, and were identified as of potential
use if new house sale samples were received continuously.
Deploying models for non-scientific users is also an interesting
practical problem; a prototype was deployed at [1].

IV. CONCLUSION

Several variations of Linear Regression models, Decision
Trees, Random Forests, Gradient Boosting, a MLP network
were applied to the house price prediction problem. Linear
regression models can give respectable results, whilst being
extremely parsimonious and explainable - although feature
engineering is critical to this success. Decision trees can
handle categorical data, but overfit on this dataset. Random
Forest and Gradient Boosting models performed well, and an
advantage is that are very easy to fit and work well with
categorical data. Historically, a weakness has been lack of
interpretability, but recent advances in SHAP mostly neutralise
this weakness. MLP gave reasonable results but is overly
complex for a task of this nature. Combining linear regression
with clustering yielded the best results, showing the benefits
of an open-mind when modelling; although shown to be
low in severity on this dataset, an effect of this approach
being discontinuities in prediction between clusters. Good data
exploration and data encoding is necessary to leverage all
models types to the fullest extent.
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