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I. CLASS BOUNDARIES AND POSTERIOR PROBABILITIES

Generative models solve posterior class probabilities
p(Ck|x) directly, but have to first determine the likelihood
p(x|Ck) and prior p(Ck) for each class individually. Then,
given an input, x, we ask what is the posterior probability
that it belongs to class Ck. By adjusting the prior, we express
our existing beliefs about the probabilities of each of the
classes. Fig 1, we see that the innermost ring of the contour
represents the greatest likelihood of a point belonging to that
class. The decision function resembles a sigmoidal function
whose contour is shown in Fig 2.

Fig. 1: Likelihood function contour overlay on top of data-
points. A datapoint is highly likely to belong to the blue class
if it lies on (0, 3) and very unlikely if it lies on (−2.5, 8).

In this paper we consider two-class problems where two
classes are denoted by C1 and C2. Then, given an observation
x, we compute its probability of belonging to C1 via Bayes
Theorem:

p(C1|x) =
p(x|C1)p(C1)

p(x|C1) + p(x|C2)p(C2)
(1)

A higher posterior probability for C1 will move the bound-
ary of the decision surface in Fig 2 further to the right. Now,
let us consider the plot against the analytical expression. From
(1) we can define a as:

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
(2)

and express the posterior for C1 as:

p(C1|x) =
1

1 + exp(−a)
= σ(a) (3)

Published on November 28, 2020. The author can be contacted via
si1u19@soton.ac.uk

σ(a) is known to be a logistic sigmoid function. Then,
we write the posterior probability with its corresponding
components as:

p(C1|x) = σ(W TX + w0)

where,

W = Σ−1(µ1 − µ2)

w0 = −1
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(4)

since the quadratic terms in X cancel due to the fact that
both covariance matrices are equal, this leads to a linear
function of X in the argument of σ(·). This is consistent with
the linear boundary seen in Fig 2.

Fig. 2: Illustrative decision surface for the probability of
membership to C1 showing points x1, x3 and x2 (from left to
right). Contour shows x1 has a high probability of membership
to C1 and x3 has a low probability. As x3 lies on the decision
boundary, the probability of it belonging to C1 is 0.5.

II. FISHER LDA AND ROC CURVE

Dimensionality reduction is the technique of projecting
data down from a higher dimension. We can perform linear
classification by using this technique; by projecting data down
from hyperspace to a one-dimensional line we can separate
datapoints into k classes. However, when this is done, there
is a lot of overlap between points and it is difficult to find a
class boundary. To solve this problem, we must find a line of
projection which maximises between-class variance so that its
tractable to find a decision boundary and minimises within-
class variance such that most points belonging to class Ck is
around the mean µk which gives us a greater certainty about
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class membership for a given prediction ŷ. To this end, we
make use of the Fisher Criterion which states:

J(w) =
(m2 −m1)

2

s21 + s22
(5)

where,

m1 =
1

N1

N1!

n∈C1

Xn

m2 =
1

N2

N2!

n∈C2

Xn

s2k =

N!

n∈Ck

(yn −mk)
2

yn = W TXn

thus,

wF =
m1 −m2

S1 + S2

wF = (S1 + S2)
−1(m1 −m2)

(6)

where mk and Sk are the mean and covariance matrices
respectively. In this paper we consider the 2-dimension case
illustrated by Fig 3 with the objective of investigating the
classification accuracy if we project data down to the Fisher
discriminant direction compared to a random one.

Fig. 3: 200 samples drawn from a Gaussian distribution with
likelihood contours for 2 classes in blue and green with centres
µ1 = (0, 3) and µ2 = (3, 2.5) respectively. The Fisher linear
discriminant vector wF = [−1.08, 0.667]T

Plotting the histogram distribution of wF projection allows
us to see the variance and overlap of data after applying
dimensionality reduction. With a projection vector which max-
imises class separation, we would expect to find a minimum
overlap which reduces the number of false positives made by
the classifier. A false positive is when a classifier incorrectly
identifies class membership. As opposed to this, a true positive
is a correct identification of class membership.

In Fig 4, we find a good separation as there is little overlap
between the two classes. We can now plot the Receiving
Operating Characteristics or ROC, shown in Fig. 5. This plot
provides a summary of the proportion of datapoints being mis-
classified and its area under the curve (AUC) gives us an

Fig. 4: Histogram of data distribution after projecting points
onto wF . This projection vector has separated classes C1

(blue) and C2 (green) with a small overlap.

Fig. 5: ROC for a two class dataset with AUC = 0.967. The
graph also shows it is best to use threshold = 0.18. The
maximum accuracy we were able to achieve is 0.91.

accuracy value in the range [0, 1] where 1 indicates 100%
accuracy. Referring back to Fig 4, if imagine sweeping a
threshold from -6 to 6, we can see that at -6, the threshold
decision boundary will mis-classify class C1 but correctly
classify C2. A visualisation of this sweep is given in Fig. 8.
Returning to the ROC curve in Fig 5, this scenario is shown
at (1.0, 1.0) where both false positive and true positive rates
are 100% as expected. When the threshold is moved to 6, we
find in the ROC curve that both true and false positive rates
fall to 0, as now, both classes are mis-classified. From this,
we infer that theoretically, the best separation will result in a
ROC curve that passes through the point (0.0,1.0).

Fig. 6: Histogram of data distribution after projecting points
onto a random vector. This projection vector provides poor
separation of classes C1 and C2 as there is a large overlap.
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Fig. 7: ROC showing performance of mean intersection
(AUCµ), Fisher (AUCF ) and random vector (AUCR). Com-
paring the AUCs, we find AUCµ = 0.972 is the highest,
indicating best performance.

Fig. 8: As we sweep the threshold from -6 to 6, the accuracy
begins to increase until we arrive at 0 where there is maximum
separation of both classes.

Next, compare the performance of Fisher with two other
alternatives: a vector which connects the means of two classes
(mean intersection), µ1 and µ2 and a random vector. Our
analysis shows the random vector has the poorest perfor-
mance. In this case, the random vector curve passes close
to (0.5,0.5) so we know it assigns class membership with
almost 50:50 probability. But it should be noted that on
occasions, the random vector can in fact assign opposite class
membership, making it worse than random as is currently
seen in Fig 7. The main basis for comparing performance
in ROC plots is to compute the AUC for each curve. Thus,
we find the mean intersection vector has the greatest area
AUCµ = 0.972, followed by Fisher AUCF = 0.963 and
then random AUCR = 0.465.

III. MAHALANOBIS DISTANCE

Mahalanobis distance is a measure of the distance between
a point and the mean of a multivariate distribution. It is a

Fig. 9: Histogram of data distribution after projecting points
onto the mean intersection vector. This projection vector
provides good separation of classes C1 and C2 as there is
little overlap.

TABLE I: Distance to mean classifier performance based on
Euclidean and Mahalanobis distance metrics.

Method Set Accuracy
Euclidean Train 94%
Euclidean Test 96%

Mahalanobis Test 93%
Mahalanobis Train 99%

generalisation which uses the number of standard deviations
away from the mean a given point is, irrespective of the scale,
making it independent of the magnitude of the scale. It is
computed by:

DM (x) =
"
(x− µ)TΣ−1(x− µ) (7)

where x is the datapoint, µ is the mean and Σ is the co-
variance. We now consider using a distance to mean classifier
which assigns class membership based on the distance a given
point is from the mean. Since we know euclidean distance does
not take into account the kurtosis and variance, we expect DM

to perform better as it is aware of both the aforementioned
factors. Table I shows DM attains an accuracy of 99%.

Fig. 10: µ1 and µ2 in blue and red showing the mean of C1 and
C2 in bold. The magenta line shows the decision boundary.


