
UNIVERSITY OF SOUTHAMPTON - SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE 1

Recursive Least Squares for Online Learning
Sameen Islam

I. INTRODUCTION

Batch learning algorithms generate predictions by learning
on the entire training dataset, whereas an online learning
algorithm considers data arriving in a sequential order which is
then used to update the prediction. This makes online learning
adaptive to data distribution which changes with time. In this
paper, we focus on comparing two online learning algorithms:
stochastic gradient descent (SGD) and recursive least squares
(RLS). Since RLS takes an online approach to the least squares
regression problem, we build up to it by first considering the
batch learning case where the function f(x) = wTX is to
be learned through adjusting weights w ∈ RD from input
matrix X ∈ RN×D and target y ∈ RN . Weights are learned
by minimising error:

E =

N∑
i=1

(xTi w− yi) = (Xw−y)T (Xw−y) = ||Xw−y||22

(1)
Equation 6 in appendix shows that the derivative of this error

function gives us the closed-form pseudo-inverse solution with
non-singular covariance matrix Σ = XTX:

w = (XTX)−1XTy = Σ−1
N

N∑
i=1

(xiyi) (2)

Where the computational complexity of Σ is O(ND2) as
ΣN =

∑N
i=1(xix

T
i). In addition, inversing Σ incurrs O(D3)

while the remaining matrix multiplication XTy takes O(D2).
Thus, the computational complexity for updating the weight
is O(ND2 + D2). If we consider performing this update on
a dataset of size N , in a sequential nature after the arrival of
each datapoint n = 1, ..., N then the total complexity will be
O(N2D2 +ND3).

RLS does not incur the high computational complexity like
the least squares solution as it does not compute an inverse
after the arrival of a new datapoint. By initialising w0 = 0
where w ∈ RD and P0 = I ∈ RD×D the weights can be
learned through iteration using the matrix inversion lemma
which is much more efficient as described in equation 7 in
appendix:

Pn = Pn−1 −
Pn−1xnx

T
nPn−1

1 + xT
nPn−1xn

kn =
λ−1 × Pn · xn

1 + λ−1 × xn.T · Pn · xn
wn = wn−1 − Pnxn(xn

Twn−1 − yn)

(3)

Published on February 22, 2021. The author can be contacted via
si1u19@soton.ac.uk

where Pn is the inverse of the covariance, kn is the gain
vector and wn is the weight vector.

An alternative method of batch learning is gradient descent
(GD) which scales well for large number of input data as it
does not face the computational complexity of matrix inver-
sion. The learning method minimises a function minx f(x)
by computing its gradient and taking a small step (defined
by learning rate η) in the negative direction from a randomly
initialised point:

w(n+1) = w(n) − η∇wE

∇wE = −2XT (y −Xw)
(4)

This is really effective on smooth convex functions, how-
ever, for an input X with very large number of rows, ∇wE
can take very long time to compute as the XTX operation
essentially sums over all data points. Instead of computing
the exact ∇wE, if we instead approximated after the arrival of
new datapoints, we could rapidly descend towards the minima,
avoiding getting trapped in saddle points and local minima due
to noise in each iterative update. With SGD, we may achieve
this:

wn+1 = wn − η(yn −wTxn)xn (5)

As it does not operate on the entire input X , SGD can
benefit from lower computational complexity costs thereby
presenting itself as an attractive learning option even for
functions that tackle problems using batch learning.

II. DATASET

To compare the learning algorithms, we formulate a dataset
of varying sizes and dimensions as described in table I. There
are two scenarios: in the first, there are a high number of
rows and a small dimensionality. In the second, there are
a small number of rows and a high dimensionality. Data is
sampled from a normal distribution with Gaussian noise added
to targets as we want to simulate the noise that arises in real-
world data. In the case of linear least squares regression and
gradient descent algorithms, we consider batch learning as the
model is exposed to the entire training set of input X ∈ RN×D

and target y ∈ RD. On the other hand, since SGD and RLS
are online learning algorithms, we consider m pairs of training
samples {x1, y1}, ..., {xm, ym} which simulates the sequential
arrival of data over time:

..., {xt−1, yt−1}, {xt, yt}, {xt+1, yt+1}, ...

where inputs xn ∈ RD and yn is a scalar. The three cases of
input matrix X as defined in table I cover cases where number
of datapoints far exceed dimensions, and vice-versa, lastly it
covers the edge case where the input matrix is square. We

2 UNIVERSITY OF SOUTHAMPTON - SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

TABLE I: Synthetic data is generated from a normal Gaussian
distribution with noise of µ = 0, σ = 0.8 added to target
y. The table below shows the number of datapoints (N),
dimension (D), mean (µ) and standard deviation (σ) of input
matrix X.

N D µ σ

500 30 0 1
30 500 0 1

300 300 0 1

TABLE II: Execution time T of learning algorithms on syn-
thetic dataset. Times shown are averaged over 20 executions
to minimise the effects of caching. RLS was applied with
λ = 0.9. The closed-form solution is indicated by A+.

Learner N D IMax η T

A+ 500 30 N/A N/A 2.67 s
GD 500 30 1000 0.0001 498 ms

SGD 500 30 1000 0.0001 333 ms
RLS 500 30 1000 N/A 893 ms

A+ 300 800 N/A N/A 2.45 s
GD 300 800 1000 0.0001 478 ms

SGD 300 800 1000 0.0001 388 ms
RLS 500 30 1000 0.0001 803 ms

A+ 300 800 N/A N/A 3.35 s
GD 300 800 1000 0.0001 678 ms

SGD 300 800 1000 0.0001 488 ms
RLS 500 30 1000 0.0001 903 ms

also apply these learning algorithms on the diabetes dataset
(Hastie, 2004) to demonstrate sample usage of a real-world
application.

III. RESULTS

We experimented with the three remaining learners: GD,
SGD & RLS on synthetic datasets of varying dimensions
as described in the previous section. We define a constant
learning rate η = 0.0001 and maximum iteration Im = 1000
such that training progress of each learner could be measured
under the same conditions. Our main finding is that GD
achieves best convergence in a relative manner within fewest
iterations. This is in line with expectation as it has exposure
to the entire input data and at each iteration, it takes a step
towards lower gradient.

As we aimed to achieve an even comparison, we kept the
η of SGD extremely small and the same as GD. As expected,
the small learning rate causes SGD to undershoot approaching
the minima by a very large margin as demonstrated best in
figure 2. More interestingly, in an online learning scenario, we
note that RLS is a much more attractive candidate as in every
scenario, it manages to minimise error in a manner closely
resembling GD.

RLS features a λ term which is essentially a forgetting
factor which places weights on the error terms stretching
back to the past as a geometric series. In this way, error
terms closer to present time retains its full values while
error terms further back from the past is decayed by λ.
In figure 1 we find that RLS reaches convergence rapidly,

Fig. 1: RLS arrives close to convergence with λ = 0.9 but
with significant variance. SGD monotonically decreases error
but not quickly enough to converge into the minima.

Fig. 2: SGD showing insufficient but more rapid progress. RLS
with λ = 0.9 shows total convergence.

however it suffers from perturbations caused by noise when
data arrives sequentially. Comparing against SGD, we find
a vast difference in convergence speed with RLS as SGD
monotonically decreases, albeit very slowly.

For an input matrix X that is square, we found that once
again RLS demonstrated better performance compared to SGD
as shown in figure 3.

When running these experiments on the diabetes data, we
noticed that error could not be minimised by any of the
algorithms. The reason for this could be that either the learning
rate or the maximum iteration size is too small. However,
increasing this did not result in error minimisation, which led
us to believe that the gradient is already on a minimum. Hence,
none of the algorithms exhibited convergence properties. In
fact, figure 4 shows that error begins to increase as we ‘jump‘
around the function and away from the optimum. This can be
stopped with a lower η in the case of SGD or a lower λ for
RLS, however, this still does not minimise the error lower than
that achieved by GD. Figure 5 is interesting as we see an open
source software package struggle to converge to a result when

SAMEEN ISLAM 3

Fig. 3: RLS with λ = 0.9 monotonically decreases error
however it is interesting to note that in previous cases, the
learner exhibited E ≤ 50 by 200 iterations. In this case, the
learner needed to be exposed to 3 times as much data before
showing the same performance.

Algorithm 1: RLS
Result: wn weight at iteration i
X input matrix ;
y target vector ;
Im = 1000 maximum iteration;
λ = 0.98 forgetting factor ;
Pn = I ;
for i← 0 to Im do

kn = λ−1×Pn·xn

1+λ−1×xn.T ·Pn·xn
;

Pn = (λ−1 × Pn)− (λ−1 × kn · xTn · Pn) ;
wn = wn−1 − kn × (xTn@wn−1 − yn) ;

end

compared against our own. We believe this may be caused by
implementation error.

IV. CONCLUSION

In this paper we have provided the algorithm and imple-
mented the Recursive Least Squares (RLS) filter in an online
learning setting. We performed experiments to verify that RLS
indeed is faster than existing gradient based methods, in ad-
dition to converging to minima faster. This claim is supported
by benchmarks showing execution time of each algorithm
and the relative error value after convergence. Furthermore,
we have applied these algorithm to a real-world diabetes
dataset to test performance on non-synthetic data. Finally, we
discovered that an open source implementation of RLS did
not show convergence when compared against our algorithm
on synthetic dataset. We believe this may be caused by an
implementation bug, but further investigation is needed to
verify this.

Fig. 4: Performance on the diabetes dataset. Online learning
methods fail to minimise error and begin to travel in the
opposite direction. The reason for non-convergence remains
unknown.

Fig. 5: Padasip RLS fails to converge whilst our implementa-
tion performs as expected. The fault in the external package
may have arisen due to implementation bug.

APPENDIX

A. Linear Least Squares Solution

∇wE = 2XT ||Xw − y||2
0 = 2XT ||Xw − y||2
0 = XTXw −XTy

XTXw = XTy

(XTX)−1(XTX)w = (XTX)−1XTy

w = (XTX)−1XTy

(6)

B. Matrix Inversion Lemma

We first compute the inverse A−1 and repeatedly apply the
following lemma for rank one update of the inverse with new
datapoints in x:

(A+ xxT)−1 = A−1 − A−1xnx
T
nA

−1

1 + xT
nA

−1xn
(7)

